中山◆電機◆工程數學甲_SAMPLE

中山◆電機◆工程數學甲_SAMPLE目錄

102 年 - 102 國立中山大學_碩士班招生考試_電機系(甲、丙、丁、戊、己組):工程數學甲#110510
103 年 - 103 國立中山大學_碩士班招生考試_電機系(甲、丁、戊、己組):工程數學甲#110234
104 年 - 104 國立中山大學_碩士班招生考試_電機系(甲組、丁組、己組):工程數學甲#110231
107 年 - [無官方正解]107 國立中山大學_碩士班招生考試_電機系(甲、己組)、電波領域:工程數學甲#110523
109 年 - [無官方正解]109 國立中山大學_碩士班招生考試_電機(甲、戊、己組)、通訊所(乙組)、電波聯合:工程數學甲#106080

返回

2013年-102 年 - 102 國立中山大學_碩士班招生考試_電機系(甲、丙、丁、戊、己組):工程數學甲#110510

申論題

1. (7%) Find the Laurent series representation of a function
  63083ac2ccf12.jpg
with center at a = j in the domain 1 <|z -j |< 2, j = 63083aecc3d28.jpg.

申論題

2. (8%) Evaluate the following integral:
63083b107848b.jpgwhere C denotes a counterclockwise simple closed contour |z| = 3.

申論題

3. (15%) Compute the Fourier transform63083b4180d6f.jpg of a signum function f(t) defined as  63083ca694321.jpgEach calculation step is required for obtaining the credit. 

申論題

4.(15%)下面的問題共有三個子題,只要寫出每個子題的答案即可(不需寫出計算過程),例如: (a) β=1,γ=2。 Let a1 = [1 0 1 α]T,a2=[I β 2 2]T, and a3 = [-2 3 γ -4]T be three vectors in R4, where a, β, and γ are three real parameters, and denote A := [a1 a2 a3] 63083db0c8d30.jpg.


【題組】

(a) (4%) Suppose a is not a positive integer. Find real β and γsuch that{a1, a2, a3} is a linearly dependent set.

申論題 【題組】

(b) (5%) Now let a = 2, β = -1,γ = -5, and let x be a nonzero vector in the null space N(A) of A. Find the value of k to satisty ||x|| 1 + 2||x||∞ + k||x||2 = 0.

申論題 【題組】

(c) (6%) Now let a = 2, β = -1, γ= -5, and let d denote the distance between vector [1 4 0]T and R(AT), the range space of AT. Compute the value of d.

申論題

5.(10%)下面的問題共有二個子題,只要寫出每個子題的答案即可(不需寫出計算過程),例如: (a)θ=30或θ=π/6。
Consider the inner product space C[0, 1] with (f, g) :=63083f211fb9e.jpg f(x)g(x)dc and the nomm 63083f3ecf7c0.jpg. Denote S := span (1, x} as a subspace of C[0, 1].


【題組】

(a) (4%) Compute the angle θ, taken value in [0, π /2), between 1 and x.

申論題 【題組】(b) (6%) Find a vector u(x) in C[0, 1], so that {1, u(x)} forms an orthonormal basis for S.
申論題

6. (20%) Consider the following system of differential equations: 630841e36cfdc.jpg where630841fd16afb.jpgare constant coefficients.


【題組】

(a) (5%) Suppose u ≡ 0 and the equations are driven by non-zero initial conditions. Determine the conditions on the coefficients63084230a6682.jpg such that 6308427c67d82.jpg

申論題 【題組】

(b) (10%) Let the initial conditions be equal to zero. For the values 630842af69c46.jpg, 630842c799822.jpg= -1, and
630842e937c27.jpg
calculate the response y(t) = 2x1(t) - x2(t). Determine at what time the peak value of y occurs.

申論題 【題組】

(c) (5%) For the values 6308433211dbc.jpg = -2, and u(t) = sin(t), calculate the steady-state response of y(t)=x1(t)-x2(t).

申論題

7. (15%) Consider the region R enclosed by the x-axis, x = I and y = x3, as illustrated below
6308437f82bb1.jpg


【題組】

(a) (3% + 2%) Find the flux of 630843a0cff2f.jpg = (1 + y2)j out of R through the two sides C1 (the horizontal segment) and C2 (the vertical segment).

申論題 【題組】

(b) (10%) Find the flux of 630843cf71245.jpg= (1 + y2)j out of the third side C3.

申論題
8.(10%) Consider the following Lyapunov equation
 XA+ATX+Q=0
 where A is a (n-dimensional) real square matrix, and X, Q are real symmetric matrices. 

【題組】

(a) (5%) Suppose all eigenvalues of A have negative real parts. Show that X =63084478514fe.jpgdτ a solution to the Lyapunov equation.

申論題 【題組】(b) (5%) Suppose Q is positive definite and the Lyapunov equation has a positive definite solution X. Show that all eigenvalues of A have negative real parts.

返回

2014年-103 年 - 103 國立中山大學_碩士班招生考試_電機系(甲、丁、戊、己組):工程數學甲#110234

申論題

1. (15%) Evaluate the following integral62faf1fef1eb2.jpg

申論題

2. (15%) Deine the Fourier transform ofa signal f(t) as62faf2312db81.jpg


【題組】

(2) (7%6) Compute the quantity A given below 62faf26242d51.jpgwhere the Fourier transform of f1(t) is given in the following figure (a).
62faf41d89d5b.jpg

申論題 【題組】

(b) (8%) Compute the quantity B given below62faf2ad4c7f7.jpgwhere the Fourier transform of f2(t) is given in the following figure (b).
62faf486b4931.jpg

申論題

3.(11%)下面的問题共有二個子題,(1)子題要清楚地寫山證明,(b)子題只要簡短扼要地回答 提問即可。 Let A be any matrix in 62faf65e95a69.jpg. Then, since rank(A) = dim(R(A)), the dimension of range of A, and R(A) = R(AAT), we have the result rank(A) = rank(AAT). Therefore, when replacing A by its QR factorization, we get rank(A) = rank(QRRTQT).


【題組】

(a) (6%) Please continue the argument to derive the result rank(A) = rank(R).
(接下來前段是背景知識介紹,之後才是提問)Insthq given62fafb773ca88.jpg, instead of using the elementary row operations (i.e. the Gauss eliminations) to manipulate the equation, we may also apply the QR factorization to the equation to get QRx = b, which implies further QT QRx = QTb. Since QTQ = In, it gives Rx = QTb. Thus, according to the result of (a), when all columns of A are linearly independent, the square matrix R is nonsingular and so the solution x =62fafbdeddfce.jpgb is obtained. It seems that we may summarize the above argument as the following statement: 

Given62fafc9c456b6.jpg, where all columns of A are assumed linearly independent, then solution to the equation Ax = 6 can always be computed from x =62fafc231b349.jpg, where Q and R are matrices obtained from the QR factorization of A.

 However, the simple example62fafcc3302ee.jpg shows that the summary is incorrect because, according to the summary, the solution is x =62fafce3018f5.jpg=0 and obviously it does not satisfy the original equation.

申論題 【題組】(b) (5%) What is the error (or are the errors) in the argument right before the summary to make it incorrect?
申論題

4.(14%)下面的問題共有二個子題,只要簡短扼要地回答提問即可,不須寫出答案背後的推 導。
 Let V be a vector space with dim(V) = n and an ordered basis E := [x1, ..,xn].Let F := [y1,... , Yn] be the ordered orthonormal basis generated from basis E by applying the Gran- Schmidt Orthogonalization Process. For any62fafea987b59.jpg, let [v]Eand [v]F denote the coordinate vectors of v with respect to bases E and F, respectively. Let T denote the transition matrix from basis E to basis F. Let L : 62fafee02960d.jpg, ie. L is a linear operator mapping V into itself, and suppose that 62faff2c42b0d.jpg
Let's denote the matrix representation of L with respect to basis E by A.


【題組】(a) (6%) Write an equation to indicate the relationship between the two coordinate vectors [L(v)]E and [v]F.
申論題 【題組】(b) (8%) Obviously, matrix T' relates to the two bases E and F. What conclusions about vectors in basis E and/or in basis F can be drawn if the matrix Tis known to be diagonal?
申論題

5. (25%) Consider the following system of differential equations: 62fb0093a7fda.jpgwhere62fb00aedfcd7.jpg are constant coefficients.


【題組】

(a) (10%) Let 62fb00d243489.jpg. Suppose62fb00e7c7134.jpg 4 0 and u ≡ 0. Find the solution of x1 and x2 for the initial conditions x1(0) = 62fb01343762c.jpg.

申論題 【題組】

(b) (4%)Suppose 62fb015a8611a.jpg Find the range of k: such that the solution of x1 and x2 converges to zero for any initial condition.

申論題 【題組】

(c) (5%) Suppose62fb01b82a48e.jpgFind the range of k such that the solution of at and ta exhibits oscillatory behavior for any nonzero initial condition.

申論題 【題組】

(d) (6%) For the values 62fb01de4657c.jpg, calculate the steady-state response of62fb021d437c1.jpg.

申論題
6.(15%) Let F(c, y2Z) = (y +y2z)i +(2-z+2xyz)j + (-y +xy2)k

【題組】(a) (3%) Verify that F' is conservative.
申論題 【題組】(b) (10%) Find a potential function f(x, y, z) for F(c, y, z). 
申論題

7. (5%) Evaluate the following integral

 62fb03ae37117.jpg

申論題
6.(15%) Let F(c, y2Z) = (y +y2z)i +(2-z+2xyz)j + (-y +xy2)k

【題組】

(c) (2%) Find62fb038fda3ee.jpg, where C is the straight line going from the points (2,2,1) to the point (1,-1,2).


返回

2015年-104 年 - 104 國立中山大學_碩士班招生考試_電機系(甲組、丁組、己組):工程數學甲#110231

申論題

Problem 1 (20%) ป็น 8น Let u be a solution to the heat equation:62f9e546754e9.jpg with boundary conditions: u(0, x) = f(x), O ≤ s  ≤ I, and62f9e5e180d41.jpg=0, 0≤t<∞. 


【題組】

(a) (10%) Define the thermal energy62f9e627f3a15.jpgu(t,x)da. Show that under the above assumptions, T(t)

is constant in time; i.e., 62f9e65c080ad.jpgf(x)dr, for all t≥0.

申論題 【題組】

(b) (10%) Let f(x) = cos(πx). Find the solution u.

申論題
Problem 2 (25%) Let F = (y2 + axz + yz)i +(x2+ bcy +xz)j +(x2 + cyz+ wy)k.

【題組】(a). (10%) Find the values of the constants a,b, c for which F is conservative.
申論題 【題組】

(b). (15%) For the values found in (a), ind a surface S with the following property: the path integral62f9e6e94a760.jpg F ㆍ dr is equal to O for any two points P, Q (connected by any curve C) on the surface S.

申論題

Problem 3 (13%)
下面的問題共有(a)~(C)三個子題:每個子題都只要寫出提問的答案即可(不須寫出答案背後的推 導)。 Let a≠0 and 62f9e7a906c53.jpg, and let 62f9e7bbaf27b.jpg(A) denote the set of all eigenvalues of A .


【題組】

(a) Suppose ItaA is nonsingular, thus, for any nonzero scalar a, Ωa :=62f9e7f759a1b.jpg is a well-defined62f9e812dbfd2.jpgmatrix. Then we know from knowledge of eigensystem of a square matrix that, corresponding to any62f9e837de38d.jpg. What is the mathematical relation betweenλ and μ?(3%)

申論題 【題組】

(b) If Ω1 , that is 62f9e8801e171.jpg, is an orthogonal matrix, then what mathematical relation between A and ATcan be derived? (5%)

申論題 【題組】

(c) If Ωa. is an idempotent matrix, then what are all possible values of det A ? (5%)

申論題
Problem 4(12%) 本問題共有(a)、(b)兩個子题,每個子題都只要寫出提問的答案即可(不須寫出答案背後的推 導)。

【題組】

(a) Write out the set62f9e8f7cc284.jpg,where N(●)and R(●) indicate the null space and the range of a matrix, respectively. (5%)

申論題 【題組】

(b) Consider the inner product space V =62f9e94dde113.jpg, where <A,B) :=tr(ATB) for A and B in 62f9e97f88f80.jpg. Describe Sh as the span of a set of orthonormal vectors in  62f9e97f88f80.jpg. (7%)

申論題

Problem 5 (15%) Let C be a circle |z|=2 described in the counterclockwise direction.


【題組】

(a)(5%) Compute the following integral
62f9e9d758107.jpg, n is a positive integer

申論題 【題組】

(b)(10%) Suppose the answer you obtained in Part (a) is jnt . Use Part (a) to evaluate62f9ea03a4e8c.jpg

申論題

Problem 6(15%) Define the Fourier transform of a signal 62f9eae095e85.jpgdt, and its inverse Fourier ransform is 62f9eab59c67c.jpg. It is already known that the Fourier transform of signal x(i)=sin(ai) /(πi) is 62f9ea6b2ef45.jpg and 962f9ea4c8231a.jpg.Compute the Fourier transform of the signal 62f9ea2786240.jpg


返回

2018年-107 年 - [無官方正解]107 國立中山大學_碩士班招生考試_電機系(甲、己組)、電波領域:工程數學甲#110523

99

1.Given a continuous-time periodic signal
 Let ak and ω0, be the coefficients and fundamental frequency of the Fourier series of f(t) respectively. Then which of the following statements is correct? (A) (B) (C) (D)a0<5,ω0<2,a5>0. (E) None of the above statements are correct.

99

2.Consider a discrete signal x(n) = cos(2nr / N), where integer N is the fundamental period. Let a be the coefficients of the discrete-time Fourier series of x(n). Then which of the following statements is correct? (A) a1=-1/2,a2=1/2. (B) a1=a2=j/2 (C) (D) (E) None of the above statements are correct.

99

3.Consider an LTI system whose impulse response is G(jω)=1/(a+ jω), a > 0. Suppose that there is an input signal X(jω)=1/(a+ jω). Assume that the output signal is y(t)= , where u(t) is a unit-step signal. Then which of the following statements is correct? (A)β+y=-a (B) βy=-a (C) β-y=t+a (D) βy=at (E) None of the above statements are correct.

99

4.Consider the following three systems, where [n] or x(t) is the system input, y[n] or y(t) denotes the system output, and I.
Which of the following statements is correct? (A) I is time-invariant, II is linear, Ill is causal. (B) I is memoryless, II is causal, III is nonlincar. (C) I is stable, II is linear, III is memoryless. (D) I is causal, II is memoryless, III is linear. (E) None of the above statements are correct.

99

5. Let z =1- . Assume that , whereθ denotes the principal argument. Then which of the following statements is correct? (A) r =2,θ =π/5 (B) (C) (D) (E) None of the above statements are correct.

99

6.Which one of the following functions, where z = x+ jy is a complex variable, is analytic? (A) f(2)= , where =x-jy. (B) f(z) = xy+jx (C)f(z)=x2ーjy2 (D) f(z)=x2+y2+j2xy (E) None of the above statements are correct.

99

7.Let z be a complex number. Which of the following statements is correct? (A) Log(z1/z2) = Log(z1)+ Log(z2), where Log(z) is the principal value of the complex logarithm. (B) cos(j) is not a real value.(C) , n=0,±1,±2,......(D) z2+2z-ez= ,where exp(2)=ez. (E) None of the above statements are correct.

99

8. Let f(z)=z/(z2+9), and C be a circle|z - j2|=4 in counterclockwise direction. The evaluation of . Then which of the following statements is correct? (A) a<0,β>0 (B) a >0,β>0 (C)a=0,1<β<4 (D) a>0, -3<β<4 (E) None of the above statements are correct.

99

9. Let f(z)= , and C be the right-hand half of the circle|z|=2 form z = j2 to z =-j2. Compute the value of S. f(z)dz =a+ jB. Then which of the following statements is correct? (A) a=0,-15<β<0 (B) a>0,0<β<15 (C)-12<a+β<l2 (D)-2<aβ<-12 (E) None of the above statements are correct

99

10. The Laurent series of is Which of the following statements is correct? (A) aβ=1/6 (B) aβ=1/12 (C) a+β=5/6 (D)a+β=1/3 (E) None of the above statements are correct. 

申論題

以下第11題到第13題中之所有的提問,都不需要高出推導過程,只要高出答案即可,答案正確 就得分。
11. (10%) Let630c5e3aca6c0.jpg.


【題組】

(a) (5%) Suppose that m=n = 3, A = 630c5e639ed9e.jpg. Find the set of all solutions to the -4 2 equation Ax = b if it is consistent. Otherwise, find vector p to solve 630c5e855f1f9.jpg and, moreover peR(A) compute the value of 630c5ea3ed339.jpg.

申論題 【題組】

(b) (5%) When the equation Ax = b is unsolvable, we may consider the so-called least squares problen to find a set of solutions, having the least squares error, fom solving a normal equation. Suppose that rank(A) =k <min(m, n) and let A = BC be a full rank decomposition of A . Use the known matrices B, C, and b to describe the unique projection vector p of b onto R(A) with the least || b-pll2.

申論題

12. (10%) Let f1 =x+a and f2 = x-a , 630c5ef68c2f5.jpg, be two vectors in the vector space C[0, 1] with inner product <f,8>:=630c5f2842fb5.jpg.


【題組】

(a) (4%) Denote the angle between f1 and f2 by θ. Find all possible values of a2such that θ = π/4.

申論題 【題組】(b) (6%) Now set a = 1. Find functions g1and g2 such that {g1, g2} is an orthonormal set that satisfies Span(g1) = Span(f1) and Span(g1,g2) =Span(f1, f2).
申論題

13. (10%) Consider a linear trainsformation L:P2 →>R2 defined by L(p(x):630c62874bdd8.jpg, for every p(x)630c62c3ee5d1.jpg, with β>1.


【題組】

(A) (4%) Find all possible values of β such that630c62ef7904d.jpg, the inverse of L, does not exist.

申論題 【題組】

(b) (6%) Suppose that 630c62ef7904d.jpgexists. Find the matrix representation of 630c62ef7904d.jpgcorresponding to the ordered base s{x+1,x - 1} and 630c632ca0a8a.jpg for P2 and R2, respectively. 

申論題
 以下第14題到第15題中之所有的提問,需要寫出推導過程或詳细說明理,答案正確但沒有推導過程或說明不正確,將酌扣分數或不給分。
14. (20%) Consider the following set of differential equations
 630c63fe603f7.jpg

【題組】

(A) (15%) Let u(t) ≡ 0 and the initial conditions be x1(0)=x2(0)=630c646075c0c.jpg.Find the solutions of the differential equations.

申論題 【題組】

(B) (5%) Let initial conditions be x1(0) = x2(0) = c1(0) =630c649272896.jpg, and u(t) be the unit step function. Does the solutions of the differential equations converge to constant values as time approaches infinity? Justify your answers.

申論題

15. (10%) Evaluate the following integral
630c64b7cca2b.jpg


返回

2020年-109 年 - [無官方正解]109 國立中山大學_碩士班招生考試_電機(甲、戊、己組)、通訊所(乙組)、電波聯合:工程數學甲#106080

99 下面1-10為是非題
【題組】

1.微分方程式 620372d16cb91.jpg為非線性方程式。 (A)是(B)否

99 【題組】

2.微分方程式 620372ec7c66d.jpg有三個平衡點。 (A)是(B)否

99 【題組】

3.微分方程式 620373097c9be.jpg的解,不管初值為何,都會收斂到0。 (A)是(B)否

99 【題組】4.拉普拉斯轉换(Laplace transform)為線性轉换。 (A)是(B)否
99 【題組】

5.令函數y(t)的拉普拉斯轉换為Y(s)·則函數 6203732e57430.jpg的拉普拉斯轉换為s2Y(s)。 (A)是(B)否

99 【題組】

6.函數 62037361c9908.jpg的傅立葉轉換(Fourier transform)為 6203738213e5f.jpg (A)是(B)否

99 【題組】7.複函數f(z)=(z+1)/z在原點之外的所有複平面上皆為解析(analytic)。 (A)是(B)否
99 【題組】8.複函數f(z)=sin z之絕對值會隨著z的虛部增大而發散。 (A)是(B)否
99 【題組】

9. 定義Del操作子為: 620373b2e1b0b.jpg。若為具有連續一二偏導函數的連續純量場函數,則x(Vφ)≠0除非φ是常數函數或線性函數。 (A)是(B)否

99 【題組】10.承上題,Vφ在φ之定義域上的任何封閉路徑積分皆為0。 (A)是(B)否
99

下面11-15題為單選,考慮微分方程式62037424d7832.jpg,並回答以下第11至15题。


【題組】

11.假設u(t)≡0, 6203746a0ffab.jpg。下列哪一組初值 62037483d8472.jpg所對應的解不是z(t)≡0, 6203749d2b403.jpg。 (A)(0,0)(B)(π,0)(C)(0,π)(D)(0,一π)

99 【題組】

12.假設u(t)≡, 620374e1be377.jpg。將前述方程式就 620374f203faf.jpg線性化後之線性方程式,滿足以下哪個敘述? (A)若b=0,則任何初值對應的解皆會收斂到0。 (B)若b=0,則有些初值對應的解皆會發散。 (C)若b=1,則任何初值對應的解皆會收斂到0。 (D)若b=-1,則有些初值對應的解皆會收斂到0。

99 【題組】

13.假設u(t)≡0, 6203752504a0c.jpg。將前述方程式就 6203754c6ce9f.jpg線性化後之線性方程式,滿足以下哪個敘述? (A)若b=0,則有些初值對應的解皆會收斂到0。 (B)若b=0,則任何初值對應的解皆會收斂到0。 (C)若b=1,則任何初值對應的解皆會收斂到。 (D)若b=1,則任何初值對應的解皆會發散。

99 【題組】

14.考慮將前述方程式就 62037572a658f.jpg線性化後之線性方程式。假設b=0,且該方程式之輸入項(forcing term)為單位步階函數。下列敘述何者為正確? (A)該線性方程式的解會收斂到1。 (B)如該線性方程式的初值為(1,0),則方程式的解為sin t。 (C)該線性方程式的解會發斂 (D)該線性方程式的解會不斷。

99 【題組】

15.考慮將前述方程式就 6203759d61325.jpg線性化後之線性方程式。假設b=2,且該方程式之输入項(forcing trm)為sin t。下列敘述何者為正確? (A)該線性方程式的解會收斂到一 620375c208db3.jpgcost。 (B)該線性方程式的解會收斂到 sint。 (C)如該線性方程式的初值為(0,0),則方程式的解為sin t。 (D)如該線性方程式的初值為(0,1),則方程式的解為cos t。

99 下面16-23題為複選題,
【題組】16. 令F(x,y,z)=(y+ay2z)i+(bx-z+2xyz)j+(cy+xy2)k。下敘述何者正確? (A)有超過一組的(a,b,c值能讓F成為一個保守的向量場。 (B)只有一組(a,b,c)值能讓F成為一個保守的向量場。 (C)(a,b,c)=(-1,0,1)讓成為一個保守的向量場。 (D)(a,b,c)=(0,1,-1)讓F成為一個保守的向量場。 (E)(a,b,c)=(1,1,-1)會讓成為一個保守的向量場。 
99 【題組】

17.令 6203773342b64.jpg 。下列關於 6203774265b93.jpg之敘述何者正確?  (A)該矩陣是一個3x3的方陣。 (B)該矩陣在t≥0时,永為一個可逆矩陣。 (C)該矩陣(3,2)位置那一項為 6203777153feb.jpg。 (D)該矩陣(1,2)置那一項為 6203777d09b25.jpg。 (E)當t→∞時,該矩陣收斂為0矩陣。

99 【題組】

18. Consider the linear equation Ax = b, where A = [a1, a2, a3, a4 ] ∈ 620377e0b75c7.jpg and a1, a2, a3, a4 are column vectors of A. Suppose a1 + a2 + a3 + a4 = b. Which of the following statements are true? (A) The linear equation has exactly one solution. (B) The linear equation has infinitely many solutions. (C) No conclusion can be drawn about the number of solutions to the linear equation. (D) The vectors a1, a2,a3, a4 are linearly dependent. (E) rank([A,b]) = rank 6203784d45af3.jpg

99 【題組】

19. Consider the linear equation Ax = b with A ∈ 6203788e5f905.jpg. Which of the following statements are true? (A) If rank 6203789ab09e7.jpg = m, then there exists at least one solution. (B) If rank 620378a2f2a70.jpg= n, then there exists exactly one solution. (C) Ifrank 620378aaef329.jpg = n, then the column vectors of A are linearly independent. (D) Ifn > m, then there exists at least one solution. (E) Ifm > n, then there exists at most one solution.

99 【題組】

20.Consider the linear mapping L:V - W. Let 620378cf96c06.jpg be the zero vectors in V and W, respectively. Which of the following statements are true? (A) The condition L(V1) = L(V2) implies V1 = V2. (B) For any w ∈ W, there exists v ∈ V such that L(V) = W. (C) If L is one-to-one, then L(V) = 62037932acad3.jpg impliesv = 620379464b6e0.jpg(D) IfV1,V2,..., 620379708e052.jpg are linearly independent, L(V1), L(V2),.., 620379964c02c.jpg are also linearly independent. (E) The condition G1V1:+C2V2+...+ 620379eed1fe7.jpg= 620379fcbc123.jpg implies c1L(V1)+c2L(V2)+⋯..+ 62037a31d4e74.jpg= 62037a3a41926.jpg

99 【題組】

21. Given vectors x, y, z in IR" and matrices A, B, C in 620458f382322.jpg. Which of the following statements are true? (A) 62045921e1b6b.jpg

(B) 62045929d3498.jpg

(C) (A+B)(A -B) = A2 -B

(D) If AC = BC and C is not the zero matrix, then A = B. (E) If AB equals the zero matrix, then BA also equals the zero matrix.

99 【題組】

22.Let A ∈ 6204599a2dce1.jpg, 62045c33d3559.jpg denote the column space of A, 62045c24bea0d.jpgdenote the null space of A,
and dim(S) denote the dimension of a subspace S. Which of the following statements are true?
(A) For any x ∈ 620459bf82537.jpg, there exists u∈ 62045a5de37c0.jpg and v ∈ 62045c410a0ef.jpg such that x = u + v.
(B) Suppose u ∈ 62045c51b844f.jpg and v ∈ 62045b96a6ffe.jpg. Then 62045ba7df91b.jpg = 0.
(C) dim 62045c597ea88.jpg+ dim 62045bb985954.jpg = n
(D) For any y ∈ 62045c61de47e.jpg, there exists x ∈ 62045bcf53fd7.jpg such that y = 62045bdbd0c52.jpg.
(E) Ify ∈ 62045bf056444.jpg  62045c6a79b95.jpg, then y is the zero vector in 62045c054bd3a.jpg.

99 【題組】

23. Let A ∈ 62045c9674458.jpg and x ∈ 62045ca5c9785.jpg. Which of the following statements are true?
(A) If A is singular, then O is an eigenvalue of A.
(B) A and 62045d0cbb77d.jpg share the same eigenvalues and eigenvectors.
(C) If A is diagonalizable, then A has n distinct eigenvalues.
(D) Suppose that A is nonsingular. The condition Ax = λx implies 62045d20a6764.jpg.
(E) Suppose that all the eigenvalues of A are real and positive. Then we have 62045d5e332a5.jpg > 0.

申論題
以下第24到第25題需要簡明寫出計算過程,答案正確但沒有計算過程,將酌扣分數或不給分。第24題到第25題中z=x+jy代表複數,其中xy是實數而j=√-1。

【題組】

24. (a) Let I be the circle 62045db943c8f.jpg oriented positively. Evaluate the integral fatid

申論題 【題組】

(b) Evaluate the integral 62045decf27fc.jpg

申論題 【題組】

25.(a) Define62045dfde4d7d.jpg
Let zv be a pole of f(z). If zx is inside the unit circle |z| = 1, compute the residue of f(z) at zk.

申論題 【題組】

(b) Evaluate the integral 62045e169ef82.jpg