申論題 | 1. (7%) Find the Laurent series representation of a function |
申論題 | 2. (8%) Evaluate the following integral: |
申論題 | 3. (15%) Compute the Fourier transform |
申論題 | 4.(15%)下面的問題共有三個子題,只要寫出每個子題的答案即可(不需寫出計算過程),例如:
(a) β=1,γ=2。 Let a1 = [1 0 1 α]T,a2=[I β 2 2]T, and a3 = [-2 3 γ -4]T be three vectors in R4,
where a, β, and γ are three real parameters, and denote A := [a1 a2 a3] 【題組】 (a) (4%) Suppose a is not a positive integer. Find real β and γsuch that{a1, a2, a3} is a linearly dependent set. |
申論題 | 【題組】 (b) (5%) Now let a = 2, β = -1,γ = -5, and let x be a nonzero vector in the null space N(A) of A. Find the value of k to satisty ||x|| 1 + 2||x||∞ + k||x||2 = 0. |
申論題 | 【題組】 (c) (6%) Now let a = 2, β = -1, γ= -5, and let d denote the distance between vector [1 4 0]T and R(AT), the range space of AT. Compute the value of d. |
申論題 | 5.(10%)下面的問題共有二個子題,只要寫出每個子題的答案即可(不需寫出計算過程),例如:
(a)θ=30或θ=π/6。
【題組】 (a) (4%) Compute the angle θ, taken value in [0, π /2), between 1 and x. |
申論題 | 【題組】(b) (6%) Find a vector u(x) in C[0, 1], so that {1, u(x)} forms an orthonormal basis for S. |
申論題 | 6. (20%) Consider the following system of differential equations:
【題組】 (a) (5%) Suppose u ≡ 0 and the equations are driven by non-zero initial conditions. Determine the
conditions on the coefficients |
申論題 | 【題組】 (b) (10%) Let the initial conditions be equal to zero. For the values |
申論題 | 【題組】 (c) (5%) For the values |
申論題 | 7. (15%) Consider the region R enclosed by the x-axis, x = I and y = x3, as illustrated below 【題組】 (a) (3% + 2%) Find the flux of |
申論題 | 【題組】 (b) (10%) Find the flux of |
申論題 | 8.(10%) Consider the following Lyapunov equation XA+ATX+Q=0 where A is a (n-dimensional) real square matrix, and X, Q are real symmetric matrices. 【題組】 (a) (5%) Suppose all eigenvalues of A have negative real parts. Show that X = |
申論題 | 【題組】(b) (5%) Suppose Q is positive definite and the Lyapunov equation has a positive definite solution X. Show that all eigenvalues of A have negative real parts. |
申論題 | 1. (15%) Evaluate the following integral |
申論題 | 2. (15%) Deine the Fourier transform ofa signal f(t) as 【題組】 (2) (7%6) Compute the quantity A given below
|
申論題 | 【題組】 (b) (8%) Compute the quantity B given below |
申論題 | 3.(11%)下面的問题共有二個子題,(1)子題要清楚地寫山證明,(b)子題只要簡短扼要地回答
提問即可。
Let A be any matrix in 【題組】 (a) (6%) Please continue the argument to derive the result rank(A) = rank(R).
Given However, the simple example |
申論題 | 【題組】(b) (5%) What is the error (or are the errors) in the argument right before the summary to make it incorrect? |
申論題 | 4.(14%)下面的問題共有二個子題,只要簡短扼要地回答提問即可,不須寫出答案背後的推
導。 【題組】(a) (6%) Write an equation to indicate the relationship between the two coordinate vectors [L(v)]E and [v]F. |
申論題 | 【題組】(b) (8%) Obviously, matrix T' relates to the two bases E and F. What conclusions about vectors in basis E and/or in basis F can be drawn if the matrix Tis known to be diagonal? |
申論題 | 5. (25%) Consider the following system of differential equations:
【題組】 (a) (10%) Let |
申論題 | 【題組】 (b) (4%)Suppose |
申論題 | 【題組】 (c) (5%) Suppose |
申論題 | 【題組】 (d) (6%) For the values |
申論題 | 6.(15%) Let F(c, y2Z) = (y +y2z)i +(2-z+2xyz)j + (-y +xy2)k 【題組】(a) (3%) Verify that F' is conservative. |
申論題 | 【題組】(b) (10%) Find a potential function f(x, y, z) for F(c, y, z). |
申論題 | 7. (5%) Evaluate the following integral |
申論題 | 6.(15%) Let F(c, y2Z) = (y +y2z)i +(2-z+2xyz)j + (-y +xy2)k 【題組】 (c) (2%) Find |
申論題 | Problem 1 (20%)
ป็น 8น
Let u be a solution to the heat equation: 【題組】 (a) (10%) Define the thermal energy is constant in time; i.e., |
申論題 | 【題組】 (b) (10%) Let f(x) = cos(πx). Find the solution u. |
申論題 | Problem 2 (25%)
Let F = (y2 + axz + yz)i +(x2+ bcy +xz)j +(x2 + cyz+ wy)k. 【題組】(a). (10%) Find the values of the constants a,b, c for which F is conservative. |
申論題 | 【題組】 (b). (15%) For the values found in (a), ind a surface S with the following property: the path integral |
申論題 | Problem 3 (13%)
【題組】 (a) Suppose ItaA is nonsingular, thus, for any nonzero scalar a, Ωa := |
申論題 | 【題組】 (b) If Ω1 , that is |
申論題 | 【題組】 (c) If Ωa. is an idempotent matrix, then what are all possible values of det A ? (5%) |
申論題 | Problem 4(12%)
本問題共有(a)、(b)兩個子题,每個子題都只要寫出提問的答案即可(不須寫出答案背後的推
導)。 【題組】 (a) Write out the set |
申論題 | 【題組】 (b) Consider the inner product space V = |
申論題 | Problem 5 (15%) Let C be a circle |z|=2 described in the counterclockwise direction. 【題組】 (a)(5%) Compute the following integral |
申論題 | 【題組】 (b)(10%) Suppose the answer you obtained in Part (a) is jnt . Use Part (a) to evaluate |
申論題 | Problem 6(15%)
Define the Fourier transform of a signal |
99 | 1.Given a continuous-time periodic signal |
99 | 2.Consider a discrete signal x(n) = cos(2nr / N), where integer N is the fundamental period. Let a be
the coefficients of the discrete-time Fourier series of x(n). Then which of the following statements is
correct?
(A) a1=-1/2,a2=1/2.
(B) a1=a2=j/2
(C) |
99 | 3.Consider an LTI system whose impulse response is G(jω)=1/(a+ jω), a > 0. Suppose that there is
an input signal X(jω)=1/(a+ jω). Assume that the output signal is y(t)= |
99 | 4.Consider the following three systems, where [n] or x(t) is the system input, y[n] or y(t) denotes
the system output, and
I. |
99 | 5. Let z =1- |
99 | 6.Which one of the following functions, where z = x+ jy is a complex variable, is analytic?
(A) f(2)= |
99 | 7.Let z be a complex number. Which of the following statements is correct?
(A) Log(z1/z2) = Log(z1)+ Log(z2), where Log(z) is the principal value of the complex logarithm.
(B) cos(j) is not a real value.(C) |
99 | 8. Let f(z)=z/(z2+9), and C be a circle|z - j2|=4 in counterclockwise direction. The evaluation of |
99 | 9. Let f(z)= |
99 | 10. The Laurent series of |
申論題 | 以下第11題到第13題中之所有的提問,都不需要高出推導過程,只要高出答案即可,答案正確 就得分。 【題組】 (a) (5%) Suppose that m=n = 3, A = |
申論題 | 【題組】 (b) (5%) When the equation Ax = b is unsolvable, we may consider the so-called least squares problen to find a set of solutions, having the least squares error, fom solving a normal equation. Suppose that rank(A) =k <min(m, n) and let A = BC be a full rank decomposition of A . Use the known matrices B, C, and b to describe the unique projection vector p of b onto R(A) with the least || b-pll2. |
申論題 | 12. (10%) Let f1 =x+a and f2 = x-a , 【題組】 (a) (4%) Denote the angle between f1 and f2 by θ. Find all possible values of a2such that θ = π/4. |
申論題 | 【題組】(b) (6%) Now set a = 1. Find functions g1and g2 such that {g1, g2} is an orthonormal set that satisfies Span(g1) = Span(f1) and Span(g1,g2) =Span(f1, f2). |
申論題 | 13. (10%) Consider a linear trainsformation L:P2 →>R2 defined by L(p(x): 【題組】 (A) (4%) Find all possible values of β such that |
申論題 | 【題組】 (b) (6%) Suppose that |
申論題 | 以下第14題到第15題中之所有的提問,需要寫出推導過程或詳细說明理,答案正確但沒有推導過程或說明不正確,將酌扣分數或不給分。 14. (20%) Consider the following set of differential equations ![]() 【題組】 (A) (15%) Let u(t) ≡ 0 and the initial conditions be x1(0)=x2(0)= |
申論題 | 【題組】 (B) (5%) Let initial conditions be x1(0) = x2(0) = c1(0) = |
申論題 | 15. (10%) Evaluate the following integral |
99 | 【題組】 1.微分方程式 |
99 | 2.微分方程式 |
99 | 3.微分方程式 |
99 | 【題組】4.拉普拉斯轉换(Laplace transform)為線性轉换。 (A)是(B)否 |
99 | 5.令函數y(t)的拉普拉斯轉换為Y(s)·則函數 |
99 | 6.函數 |
99 | 【題組】7.複函數f(z)=(z+1)/z在原點之外的所有複平面上皆為解析(analytic)。 (A)是(B)否 |
99 | 【題組】8.複函數f(z)=sin z之絕對值會隨著z的虛部增大而發散。 (A)是(B)否 |
99 | 9. 定義Del操作子為: |
99 | 【題組】10.承上題,Vφ在φ之定義域上的任何封閉路徑積分皆為0。 (A)是(B)否 |
99 | 下面11-15題為單選,考慮微分方程式 【題組】 11.假設u(t)≡0, |
99 | 12.假設u(t)≡, |
99 | 13.假設u(t)≡0, |
99 | 14.考慮將前述方程式就 |
99 | 15.考慮將前述方程式就 |
99 | 下面16-23題為複選題, 【題組】16. 令F(x,y,z)=(y+ay2z)i+(bx-z+2xyz)j+(cy+xy2)k。下敘述何者正確? (A)有超過一組的(a,b,c值能讓F成為一個保守的向量場。 (B)只有一組(a,b,c)值能讓F成為一個保守的向量場。 (C)(a,b,c)=(-1,0,1)讓成為一個保守的向量場。 (D)(a,b,c)=(0,1,-1)讓F成為一個保守的向量場。 (E)(a,b,c)=(1,1,-1)會讓成為一個保守的向量場。 |
99 | 17.令 |
99 | 18. Consider the linear equation Ax = b, where A = [a1, a2, a3, a4 ] ∈ |
99 | 19. Consider the linear equation Ax = b with A ∈ |
99 | 20.Consider the linear mapping L:V - W. Let |
99 | 21. Given vectors x, y, z in IR" and matrices A, B, C in (B) (C) (A+B)(A -B) = A2 -B2 (D) If AC = BC and C is not the zero matrix, then A = B. (E) If AB equals the zero matrix, then BA also equals the zero matrix. |
99 | 22.Let A ∈ |
99 | 23. Let A ∈ |
申論題 | 以下第24到第25題需要簡明寫出計算過程,答案正確但沒有計算過程,將酌扣分數或不給分。第24題到第25題中z=x+jy代表複數,其中xy是實數而j=√-1。 【題組】 24.
(a) Let I be the circle |
申論題 | 【題組】 (b) Evaluate the integral |
申論題 | 【題組】 25.(a) Define |
申論題 | 【題組】 (b) Evaluate the integral
|