阿摩線上測驗
登入
首頁
>
轉學考-代數
> 96年 - 96 淡江大學 轉學考 代數#55974
96年 - 96 淡江大學 轉學考 代數#55974
科目:
轉學考-代數 |
年份:
96年 |
選擇題數:
0 |
申論題數:
7
試卷資訊
所屬科目:
轉學考-代數
選擇題 (0)
申論題 (7)
1. Prove that {1,-1, i, -i} is a cyclic group under the usual multiplication. (10%)
2. Show that a group G is abelian if for each g in G g
2
= e, where e is the identity of G (15%)
3. Show that any group order 7 is cyclic. (15%)
4. Let G be a group such that 200 < |G| < 300. Suppose G has subgroups of order 21 and 33, find |G|. (15%)
【已刪除】5. Let R be a commutative ring with identity 1. Prove that an ideal P is a prime if and only if
is an integral domain. (15%)
6. Prove that Z is a PID, where Z is the set of integers. (15%)
7. Up to isomorphism, find all abelian groups of order 12. (15%)