阿摩線上測驗
登入
首頁
>
轉學考-代數
> 98年 - 98 淡江大學 轉學考 代數#55938
98年 - 98 淡江大學 轉學考 代數#55938
科目:
轉學考-代數 |
年份:
98年 |
選擇題數:
0 |
申論題數:
15
試卷資訊
所屬科目:
轉學考-代數
選擇題 (0)
申論題 (15)
【已刪除】1, (a) (10 poinlis) Let a,b
Z and d - gcd{a, fc}. Show that there exists r s
Z that ra+sb=d.
(b) (5 points) Let a,b and c bo, intege.vs. If a and c arc relatively prime, show that, c | ab itnplies that- c | b.
【已刪除】(c) (5 points) Show that, p
Z is a prime if and only for all integers a and b, p | ah implies p | a or p 丨 b.
(a) Show that if a
2
+ b
2
is a prime in % iJicn a b√-l is a prime in R. Give an example f,o show I,hah the convcrae is not. trvio,
【已刪除】(b)
such that
【已刪除】(c)
.3. (15 points) (a) Construct a field F over Q such l-hal; x
7
+2x + 2 has a root, in F. Find the degree of extension of F over Q.
(h) Construct a finite field of 27 eloinctits.
(a) Show f,hat for any d | n, there is a subgroup of order d,
【已刪除】(b) Show filial; if (r, n) = d、tlion a
d
<a
r
>
【已刪除】(c) Show that, tbn subgroup <a
r
> has order
【已刪除】5. (15 points) (a) Explain why non-trivial group homomorphism
exisf
【已刪除】(b) Show (Jiaf; a nori- trivial group bomomorpbism
exhibitrig an example.
(a) Show llmt every prime olcrrient in R is irrexlnciblo,
(b) Suppose ihnl R is a PID. Show tlmt, every irreducible element in /i! is a prime.