阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_向量空間:基底和維度#108872
> 試題詳解
(5%) Find the dimension of the subspacc
(A) 2
(B) 3
(C) 4
(D) 1
(E) 0
答案:
登入後查看
統計:
尚無統計資料
相關試題
12. (10%) Let M be a subset of R3 containing two or more vectors. Then: (A) The span of any two vectors in M is a plane in R3 (B) Every vector in M is in the span of M (C) If M contains more than threc vectors, then M is linearly independent (D) The span of any two nonzero vectors in M is a plane in R3 (E) None of the preceding statements is true
#2949381
(5%) Let For what valuc(s) of h is b in the planc spanned by al and az? (A) 0 (B) -10 (C) 16 (D) -17 (E) 20
#2949382
複選題Which of the following sets is basis (are bases) for R3? (A){10,1,0]T,[0,0,1]T,[1,0,0T}. (B){-2,4,-6]T,[1,-2,3]T}. (C){|0.14,0, -0.1]T, [-1,-0.2,0.4]T,[0.5,0.5,-1)T} (D) {1-1,2,3]T, [8,-7,6]T, [4,-2,3]T,[9,0,5]T}, (E) None of the above are true.
#2949383
(5%) Which of the following is true? (A) Every nonzero subspace of Rn has a unique basis. (B) Every subspace of Rn has a basis composed of standard vectors. (C) The column space of an m✖ n matrix is contained in Rm. (D) If V is a subspace of dimension k, then every generating set for V contains exactly k vectors. (E) The pivot columns of a m ✖ n matrix A form a basis for the column space of A.
#2949385
複選題Consider the vector space S consisting of all degree-2 polynomials with real coefficients, ie., polynomials in the form of c0 +c1t +c2t2. Define the inner product between two vectors as c2d2. Which of the following statement is/are true? (A). The dimension of S is 2. (B). The polynomials 1 + t, t and 1 + t2 are linearly independent. (C). The set{1 + t, t, 1 + t2} can be a basis for S. (D). The two polynomials 1 - 2t + t2, and -1 + 2t - t2 are orthogonal to cach other. (E). None of the above is true.
#2949386
複選題Find a basis of U, if exist, U ={f(x)|f(x)=a+bx+cx2+dx3},p3 =span{1,x,x2,x3}.(10% (A) f(2)=0(B)f(1)=5(C)a+b=c+d, a=2d
#2949387
Let A be an m x n matrix whose null space has dimension k. Which conclusion is correct? (A) The dimension of Null(AT) is k. (B) The dimension of row space of A is m-k. (C) The dimension of column space of A is m-k. (D) The dimension of row space of A'is n-k. (E) The dimension of column space of A is n-k.
#2952883
Let A =xyT, where t and y are two nonzero vectors of Rn, n > 1. Which of the following statements is/are true? (A) rank( A ) = 1 and the range space of A is Spanf{y}. (B) rullity( A ) = 2 and the null space of A is Spanfe,{x,y}. (C) Trace( A ) = 1 and det( A ) =0 (D) A is always diagonalizable. (E) None of the above.
#2952882
.(5%) Determine the rank of the matrix in the following. (A)0 (B)1 (C)2 (D)3 (E) 4
#2952881
11. (10%) Let Q be an n✖ n matrix. Then which of the following set is not a subspace? (A) Col O (B) Null Q (C) rank Q (D) Row Q (E) None of the above
#2952880
相關試卷
無年度 - 主題課程_向量空間:秩(rank)、零度(nullity)、維度#108952
-999 年 · #108952
無年度 - 主題課程_向量空間:基底和維度#108872
-999 年 · #108872
無年度 - 主題課程_理工學院機率論:古典機率論#108850
-999 年 · #108850
無年度 - 主題課程_向量空間:線性獨立和線性相依#108250
-999 年 · #108250
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
-999 年 · #107979
無年度 - 主題課程_向量空間:向量空間和子空間#107951
-999 年 · #107951
無年度 - 主題課程_理工學院機率論:多元隨機變數#107950
-999 年 · #107950
無年度 - 主題課程_理工學院機率論:單一隨機變數#107935
-999 年 · #107935
無年度 - 主題課程_行列式和線性方程式:線性方程式#107934
-999 年 · #107934
無年度 - 主題課程_線性映射:基底變換和座標變換#107933
-999 年 · #107933