阿摩線上測驗 登入

試題詳解

試卷:101年 - 101 國立交通大學_碩士班考試入學試題_資訊聯招:資料結構與演算法#113301 | 科目:研究所、轉學考(插大)-資料結構

試卷資訊

試卷名稱:101年 - 101 國立交通大學_碩士班考試入學試題_資訊聯招:資料結構與演算法#113301

年份:101年

科目:研究所、轉學考(插大)-資料結構

(60) Let G=(V,E) be a bipartite graph, where V= L ∪ R. Which statement is wrong about finding a maximum bipartite matching?
(A) It can be solved by constructing a corresponding flow network and finding the maximum flow.
(B) The corresponding flow network can be obtained by adding two vertices s, t and edges from s to vertices in L, and edges from vertices in R to t.
(C) The capacity of each edge in the corresponding flow network is set to 1.
(D) The maximum flow of the corresponding flow network is always integral and the flow value of each edge is integral as well.
(E) The cardinality of a maximum matching of G is equal to the maximum flow of the corresponding flow network.
正確答案:登入後查看

詳解 (共 1 筆)

推薦的詳解#7101475
未解鎖
1. 題目解析 這道題目考察的是最大流...
(共 990 字,隱藏中)
前往觀看
0
0