阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
96年 - 96 國立暨南大學轉學生招生考試試題_微積分_(財金系)#125242
> 試題詳解
5. Find the general solution of
y' + xy =
, where C stands for constant.
(A)
(B)
(C)
(D)
答案:
登入後查看
統計:
尚無統計資料
詳解 (共 1 筆)
MoAI - 您的AI助手
B1 · 2025/09/28
#6804162
1. 題目解析 這道題目是一個一階線性...
(共 1268 字,隱藏中)
前往觀看
0
0
其他試題
1. Find the area of the region bounded by the graph of , the x-axis, and the line x=3. (A)(B)(C)(D)
#3385076
2. Find the area of the region between the graphs of f(x) = 3x3 - x2 - 10x and g(x) = -x2 + 2x. (A) 0 (B)12 (C)18 (D)24
#3385077
3. Evaluate ? (A) (B) (C) (D)
#3385078
4. Find the arc length of the graph of f(x) = from x = 0 to x = 1. (A)(B)(C) (D)
#3385079
6. Find the general solution of y' - y tan t = 1, , where C stands for constant. (A) y = sec t + C cos t (B)y = tan t + C sec t (C)y = sec t + C sin t (D)y = tan t + C cos t
#3385081
7. Evaluate (A) π (B) (C) (D)
#3385082
8. Find the distance between the two parallel planes given by 3x - y + 2z - 6 = 0 and 6x - 2y + 4z + 4 = 0 (A) (B) (C) (D)
#3385083
9. Find the distance between the point (3, -1, 4) and the line given by x = -2 + 3t, y = -2t and z = 1 + 4t. (A) √3 (B)2√2 (C)√6 (D)4√3
#3385084
10. Find the minimum value of f(x, y, z) = 2x² + y² + 3z² subject to the constraint 2x - 3y - 4z = 49. (A) 156 (B)124 (C)147 (D)136.
#3385085
11. Find the maximum value of √(x²)/9 + √(y²)/16 = 1 , where x > 0 and y > 0, subject to the constraint = 1. (A) 12 (B)18 (C)24 (D)36
#3385086