阿摩線上測驗
登入
首頁
>
中山◆資工◆離散數學與演算法
>
108年 - 108 國立中山大學_碩士班招生考試_資工系(資安):離散數學與演算法#105778
> 申論題
申論題
試卷:108年 - 108 國立中山大學_碩士班招生考試_資工系(資安):離散數學與演算法#105778
科目:中山◆資工◆離散數學與演算法
年份:108年
排序:0
申論題資訊
試卷:
108年 - 108 國立中山大學_碩士班招生考試_資工系(資安):離散數學與演算法#105778
科目:
中山◆資工◆離散數學與演算法
年份:
108年
排序:
0
申論題內容
(b) Buler's Theorem. For each n Ezt,n > 1, and each a EZ, prove that if gcd(a,n) = 1, then (a中(n) = 1(mod n).