阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
97年 - 97 國立臺南大學_轉學生招生考試試題學士班二年級:微積分#124206
>
9. 在y=x
2
上求距離(0,2)最近的點。
其他申論題
(1) 何時達到最大高度?
#527951
(2) 最大高度為多少?
#527952
(3) 達最大高度時,瞬間速度及瞬間加速度各為多少?
#527953
8.已知球體體積V與半徑r之關係為,當半徑的變化率是常數時,體積的變化率是否為常數?為什麼?
#527954
10. 求
#527956
(a) (5%) Let f(x)=x², prove that f'(x)=2x by the definitionf'(x)=.
#527957
(b) (5%) Let g be a function of several variables which is defined in some neighborhood of 0. We will say that g(h) is o(h) iff = 0.Prove that g(h) = ||h|| is o(h).
#527958
(c) (5%) Let g(x,y)=x²+ y², prove that ∇g(x, y) = (2x,2y) by the definition g(x+h) - g(x)= ∇g(x) ⋅ h + o(h).
#527959
2. (15%) Suppose that the temperature at each point of a metal plane is givenby the function T(x,y)=1+x²-y². Find the path followed by a heat-seekingparticle that originates at (-2, 1).
#527960
3. (10%) Find the directional derivative of the function g(x,y)=x²+y² at thepoint (1, 2) in the direction of the vector 2i-3j.
#527961