阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_向量空間:向量空間和子空間#107951
> 申論題
題組內容
Determine and explain whether each of the following sets is a subspace of
.
a. The set of all 2x2 triangular matrices.
相關申論題
b. The set of all 2x2 lower triangular matrices.
#462934
c. The sct of all 2x2 orthogonal matrices.
#462935
(12%) Let V be a finite-dimensional vector space and T :V →V be linear. Suppose rank(T) = rank(T2). Prove that R(T) ∩N(T) = {0}.
#467033
(13%) Given a vector space V over F. Define the dual space of V* of V as the set of all functions (also known as linear functionals) from V to F, i.e, V* {f|f : V →F}. It is obvious that V* is itself also a vector space with the addition + :V*'x V*→ V* and scalar multiplication * : F x V*→ V* defined as pointwise addition as well as pointwise scalar multiplication. Given any linear transformation T : V→ W. The transpose Tt is a linear transformation from W* to V* defined by Tt(f) = fT for any f W*. For every subset S of V, we define the annihilator Suppose V, W are both finite-dimensional vector spaces and T : V → W is linear. Prove that .N(Tt) = (R(T))0.
#467032
(10%) The nullities of the matrices BBT - λ/ for λ= 0, 1,2,3, 4 are______,________,_________,_______ respectively.
#467031
(d) (2%) Compute dim(N(Bt A)).
#467030
(c) (3%) Compute rank(AtAAAt).
#467029
(b) (2%) Compute rank(AB).
#467028
(a) (3%) Compute rank(A).
#467027
(b) Find the nullity of matrix BTA (10%)
#467026
相關試卷
無年度 - 主題課程_向量空間:秩(rank)、零度(nullity)、維度#108952
#108952
無年度 - 主題課程_向量空間:基底和維度#108872
#108872
無年度 - 主題課程_理工學院機率論:古典機率論#108850
#108850
無年度 - 主題課程_向量空間:線性獨立和線性相依#108250
#108250
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
#107979
無年度 - 主題課程_向量空間:向量空間和子空間#107951
#107951
無年度 - 主題課程_理工學院機率論:多元隨機變數#107950
#107950
無年度 - 主題課程_理工學院機率論:單一隨機變數#107935
#107935
無年度 - 主題課程_行列式和線性方程式:線性方程式#107934
#107934
無年度 - 主題課程_線性映射:基底變換和座標變換#107933
#107933