阿摩線上測驗 登入

試題詳解

試卷:無年度 - 主題課程_行列式和線性方程式:行列式#107854 | 科目:主題課程專用

試卷資訊

試卷名稱:無年度 - 主題課程_行列式和線性方程式:行列式#107854

科目:主題課程專用

複選題

Denote det A as the determinant of the matrix A, and denote as the inverse of the
matrix A. Let A, B, and P be square matrices. Which of the following statements
is/are true?
(A) It is always true that det AB = det BA.
(B) If the columns of A are linearly dependent, then det A = 0.
(C)It is always true that det (A + B) = det A + det B.
(D)If A is invertible, then det

(E) Suppose that Pis invertible. Then det = det A.

正確答案:登入後查看