阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
105年 - 105 國立臺灣大學轉學生招生考試試題_(商、管、農、經學院聯招) :微積分(C)#113221
>
題組內容
6. Let R be the region enclosed by y=x, y=x-2, y=1 and y=0.
(a) (10%) Let A be the area of R. A=_____
其他申論題
3. (10%) Compute the indefinite integral =_____
#483780
4. (10%) Let Ω be a regioin (on the xy-plane) enclosed by , x=0 and y=e. Let S be the solid obtained by revolving Ω about the y-axis. Let V be the volume of S. V=_____
#483781
(a) (10%) If the unit vector u (in the xy-plane) at p is the direction (among all directions at p) along which the height (i.e. the value of z) of S increases most rapidly, then u =_____
#483782
(b) (10%) Write H for the plane x+2y+3z=1 and the curve C for the intersection S∩H. Let L be the tangent line to C at P and N be the plane perpendicular to L at P. Then the equation of N is _____
#483783
(b) (5%) The double integral =_____
#483785
7. (15%) Let Ω be the region {(x, y)|(x-1)2+y2<1}. Evaluate the double integral
#483786
1. xsinxdx=________.
#483787
2. For the equation y3-xy2+cos(xy)=2 , at the point (0,1) is ______.
#483788
3. Let , where f iscontinuous and g and h are differentiable. Find F'(t)=___________.
#483789
4. The maximum value of f(x,y)=y2-x2 on the ellipseis=_________.
#483790