阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
97年 - 97 台灣聯合大學系統(清、交、陽、中四校聯招)學士班轉學生聯合招生試題:微積分#113210
>
題組內容
2.
(b) Let a and b be constants with0 < a < b. Does the sequence {(a
n
+b
n
)
1/n
} converges? If it does converge, what is the limit? (6 分)
其他申論題
8. Evaluate the line integral f where C consists of line segments joining successively the points (1,0), (I, 1), (-1, 1) and (-1,0). Answer : __________
#483665
(a) Show that f'(0)=0.(6分)
#483666
(b) Is the derivative function f'(x) continuous at x= 0? Explain. (6 分)
#483667
(a) Find the limit: (6分)
#483668
(a) A number a is called a fixed point of a function f if f(a) = a. Prove that if f'(x)≠1 for all real numbers x, then f has at most one fied point. (6 分)
#483670
(b) Show that if converges,thenconverges.(6分)
#483671
1 Lemniscate (x2 + y2)2 = x2 -y2 At the point (x,y)= dy/dx=?
#483672
2. If x3+y3= 3xy, then x + y≤max = ?
#483673
3. The probability density function of an exponential distribution is f(x) = if x ≧ 0, f(x) = 0 if x < 0. Find the expected value E(x) = ?
#483674
4.f(x) = = ?
#483675