阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
87年 - 87 中原大學轉學生招生考試_理、工學院_應用數學系:微積分#124620
>
4. Evaluate
, where R is the region bounded by x + y = 0, x + y = 1, x - y = -1, and x - y = 2.
其他申論題
12. Find the saddle points of the function xy - 2x - y + 7.
#530149
第二部份:計算及證明題1. Prove that if f is differentiable on (a, b), then f is continuous on (a, b).
#530150
2. Suppose that the function y(x) satisfies the following differential equation: = y(x)(1 - y(x)). If y(0) =, then find y(2). (Hint: separation of variables)
#530151
3. Use Lagrange Multiplier method to calculate the maximum value of x + 2y subject to the condition that ≤ 1.
#530152
(a) y = (x²-1)(x²+x+1)
#530154
(b) y = cos(sin 2x)
#530155
(c) y= sin⁻¹(sec x),
#530156
(a) ∫xsinxdx
#530157
(b)
#530158
(c)
#530159