阿摩線上測驗 登入

申論題資訊

試卷:101年 - 101 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#110508
科目:中山◆電機◆工程數學乙
年份:101年
排序:0

題組內容

4.(25%) Let P2 denote the vector space of all polynomials of degree less than 2. (Consider the transformation L:P2 →R2 defined by L(p(x)): =630834c1d2f7f.jpg with  undecided parameters a>0 and 630834e82b49e.jpg . Let A be the matrix representation of transformation L with respect to the ordered bases E = [I, x] and E'= 6308350e069d5.jpgfor P2 and R2, respectively.

 以下小題僅需依序寫下答案即可,不需做任何推導。

申論題內容

(4.2) Let's define an inner product for P2 by <p(x),q(x)630835fbd3fde.jpg,for arbitrary 6308361be6402.jpgand γ≠I an undecided parameter. Find the orthonormal basis, denoted by F := [f1, f2], of P2, generated from basis E given above to satisfy the subspace equality constraints Span(f1)=Span(I) and Span(f1,f2)=Span(1,x). (8%)