阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
104年 - 104 國立臺灣大學轉學生招生考試:微積分(B)#112190
>
題組內容
2.(12分)
(c)令M>1。導出
。
其他申論題
8.已知三維向量場k為保守場, 則其所有可能的potential function為__ (8a)__ (4分)。令參數曲線C: r(t)=ti+πcostj+πsintk,0≤ t≤,且T為C上的單位切向量,則線積分 =__ (8b)__ (4分)。
#480512
1.(16分)求函數z=x3-4x+xy2+y2的所有臨界點(critical point),並判斷其為局部極大、極小、或是鞍點(saddle point)。不必計算各點的函數值。
#480513
(a)令β>a>0。證明存在θ0=θ0(a,β)使得。
#480514
(b)利用上式證明收斂。
#480515
(d)證明皆收斂。
#480517
1. Find the limit:Answer: _________
#480518
2. Find the smallest positive (x > 0) infection point of F(x) = dt. Answer :____________
#480519
3. How many local extreme values does the function have? Answer :___________
#480520
4. Let C be the curve of intersection of the two surfaces x2 + y2 + z2 = 3 and (x - 2)2 + (y - 2)2+z2 = 3. Find parametric equations of the tangent line to C at P = (1, 1,1). Answer :__________
#480521
5. Evaluate dA where R is the unit disk x2+ y2 ≤1. Answer :__________________
#480522