阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-基礎數學
>
112年 - 112 國立政治大學_碩士班暨碩士在職專班招生考試試題_統計學系:基礎數學#130257
>
4. Find
if tan
= x + y.
其他申論題
(b)
#552105
(c)
#552106
(d)
#552107
(e) ∫ sin5x cos2 xdx.
#552108
5. Find the extreme value of the function f(x, y, z) = x + 2y + 3z subject to constraints x - y + z = 1 and x2 + y2 = 1.
#552110
(a) Find possible eigenvalues of A.
#552111
(b) Determine the rank of A.
#552112
7. Prove that if Q is an orthogonal matrix, then det(Q) = 1.
#552113
8. Let V and W be two vector spaces and let T : V → W denote a linear transformation. Suppose that N(T) and R(T) are null space and range of T, respectively. Show that N(T) and R(T) are subspaces of V and W, respectively.
#552114
9. Let A =. Compute for any positive integer n.
#552115