阿摩線上測驗
登入
首頁
>
中山◆電機◆工程數學乙
>
110年 - 110 國立中山大學_碩士班招生考試_電機系(甲、戊、己、庚組)、通訊所(乙組)、電波聯合:工程數學甲#105948
> 試題詳解
18.令θ>0為一實數,則L(f(t-θ))等於以下哪個函数?
(A) F(s-θ)
(B)
(C) F(θs)
答案:
登入後查看
統計:
尚無統計資料
相關試題
複選題1.Let x and y be nonzero vectors in Rn, n ≥ 2. Suppose x and y are not orthogonal, i.e. xTy ≠ 0. Let A = xyT. Which of the following statements are true? (A) O is an eigenvalue of A. (B) xTy is an eigenvalue of A. (C) x is an eigenvector of A. (D) The number of linearly independent eigenvectors associated with eigenvalue 0 is n - 1. (E) A is diagonalizable.
#2857324
複選題2.Let A and B be square matrices and o be a real number. Which of the following statements are true? (A) det(A2) = det(ATA) (B) det(BTA) = det(ATBT) (C) det(aA) = aㆍdet( A ) (D) det(A +B) = det( A ) + det ( B ) (E) Swapping two rows of A will not change its determinant.
#2857325
複選題3.Consider the linear function L:R3 → R3. Suppose L(xi) = yi for i = 1,2,3,4, whereSuppose L(x4) = [c1, c2, c3]T. Which of the following statements are true? (A) c1= 1 (B)c1= 2 (C)c2=2 (D)c2=3(E)c3=-3
#2857326
複選題4.Let R( A ) denote the column space of A, and N( A ) denote the null space of A. Which of the following statements are true? (A) There exists a nonzero vector such that ATy = 0 and y = Ax for some (B) For every , we can always find some such that y = Ax. (C) Let p be the orthogonal projection of (D) Let y be a vector in (E) The intersection of R( A ) and N(AT) is the empty set.
#2857327
複選題5.Let E = {V1,V2,V3} be a basis for a three-dimensional subspace S of an inner product space V. Define. Suppose E is an orthogonal set with.Let Let p be the orthogonal projection of x onto y, and suppose p = ay, where a is a scalar. Which of the following statements are true? (A) (x,y) = 7 (B) (x,y) =8 (C) a = 7/33 (D) a = 8/14 (E) lIxll = 62
#2857328
複選題6.Let and nullity( A ) denote the dimension of N( A ). Suppose nullity( A ) = 2. Which of the following statements are true? (A) rank(AT) = 3 (B) nullity(AT) = 4 (C) Let A = [a1, a2, a3], where a1, a2, a3 are column vectors of A. Then a1 and a2 are linearly dependent. (D) The linear equation Ax = 0 has infinitely many solutions. (E) The linear equation ATy = d cannot have a unique solution for any.
#2857329
複選題7. Let Pn denote the set of all polynomials of degree less than n. Which of the following statements are true? (A) Suppose V1, V2, V3 are linearly independent vectors in P3. Then V1, V2, V3 span P3. (B) If V1,V2, V3 are linearly dependent, then Span(v1, v2) must be equal to Span(v2, v3). (C) P2 is a subspace of P3. (D) Ifv1 + v2 + V3 equals the zero polynomial, then V1, V2, V3 must be linearly dependent. (E) If V1,V2, .., Vm span a vector space V, then V1, V2, ..., Vm must be linearly independent.
#2857330
複選題8. Let and Let p be the orthogonal projection of b onto N( A ). Suppose b - p = av1 + βv2. Which of the following statements are true? (A)9a=8 (B) 9a= 9 (C) 9 β = 7 (D) 9 β=8 (E) 9a + 9 β = 15
#2857331
複選題9.Define a mapping L: R3 →R3 by L(x) = Kx, where . Suppose that E = {p, Kp, K2p} is an ordered basis of R3, and K3p - 5K2p + 7Kp - 11p = 0. Let A be the matrix representation of L with respect to basis E. SupposeWhich of the following statements are true? (A) (B)(C) (D)(E)
#2857332
複選題10. Let S be the transition matrix from {V1,V2} to {u1, u2}. Suppose Which of the following statements are true? (A)a=-1 (B)b= 2(C)c=3 (D)d=4 (E) a +b+c+d= 23
#2857333
相關試卷
110年 - 110 國立中山大學_碩士班招生考試_電機系(甲、戊、己、庚組)、通訊所(乙組)、電波聯合:工程數學甲#105948
2021 年 · #105948
109年 - 109 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#106088
2020 年 · #106088
107年 - 107 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#113265
2018 年 · #113265
106年 - 106 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#125249
2017 年 · #125249
104年 - 104 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#110518
2015 年 · #110518
103年 - 103 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#110237
2014 年 · #110237
102年 - 102 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#110521
2013 年 · #110521
101年 - 101 國立中山大學_碩士班招生考試_電機系(乙組):工程數學乙#110508
2012 年 · #110508