阿摩線上測驗
登入
首頁
>
轉學考-代數
> 102年 - 102 淡江大學 轉學考 代數#53069
102年 - 102 淡江大學 轉學考 代數#53069
科目:
轉學考-代數 |
年份:
102年 |
選擇題數:
0 |
申論題數:
9
試卷資訊
所屬科目:
轉學考-代數
選擇題 (0)
申論題 (9)
【已刪除】 (a) Suppose p is a prime number and a is an integer, (a,p) — 1. Prove that a
p~1
1 (mod p).
(b) What is the remainder when 35
35
is divided by 37?
2. (12 pts) Prove or disprove: If G is a group of order 53, then G must be cyclic.
3. (12 pts) Suppose G = {e, a, 6, c} is a group of order 4; but it contains no element of order 4. Write out the operation table for G.
(a) Prove that every finite integral domain is a field.
(b) Give an example of an integral domain which is not a field.
5. (12 pts) Show that the principal ideal (x — 1) in Z[x] is prime but not maximal. .
(a) Show that x
3
+ x + 1 is irreducible in Z
5
[x].
(b) Let R be the quotient ring Z
5
[x]/ (x
3
+x + 1). How many elements are there in R1 Is R a field? Please justify your answer