阿摩線上測驗
登入
首頁
>
轉學考-線性代數
> 95年 - 95 淡江大學 轉學考 線性代數#56041
95年 - 95 淡江大學 轉學考 線性代數#56041
科目:
轉學考-線性代數 |
年份:
95年 |
選擇題數:
0 |
申論題數:
10
試卷資訊
所屬科目:
轉學考-線性代數
選擇題 (0)
申論題 (10)
(a) Find a matrix V that diiigonalizes A. (10 points)
(b) Find A
10
. (10 points)
(a) Find tJie lcer(T). (10 points)
(b) Find the matrix of T corresponding to the ordered bases B and D, (10 points)
(a) Show that AX=Y is consistent for all 3x1 matrix Y.
(b) Find a basis for the solution space of AX=0.
【已刪除】4. Let u
1
= (1,1) and u
2
= (1,-1),and let T : R2 →R
2
be the linear operator such that
Find a formula for T(x, y). (10 points)
(a) x -y is orthogonal to W. (10 points)
(b) ||x-y||< ||x-z|| for all z in W that is different froin y. (10 points)
6. Let A be a nxn reai nsalrix. Prove that if A
2
+ l= 0, where 1 is the identity matrix,then n is even. (10 poinis)