阿摩線上測驗 登入

申論題資訊

試卷:110年 - 110 國立臺灣大學_碩士班招生考試_數學研究所:高等微積分#101950
科目:研究所、轉學考(插大)-高等微積分
年份:110年
排序:0

申論題內容

(4) [20 分] Let F be a smooth map from R3 to R3. Denote by (x1, x2, x3) the coordinate for the domain R3. Denote the origin (0,0,0) by 0. Suppose that
  615bad6bdf82d.jpg
 Prove that there exist
●open neighborhoods615badab3e685.jpgof O in (the domain) R3, and a diffeomorphism φ :615bae0081a78.jpgwhich maps O to O, ●open neighborhoods615bae315351c.jpgof O in (the target) R3, and a diffeomorphism615bae61ce155.jpg V which maps O to O,
 615bae8ac8ac3.jpg
 What follows is the diagram for your reference.
615baebc27c9a.jpg