阿摩線上測驗
登入
首頁
>
轉學考-線性代數
> 89年 - 89 淡江大學 轉學考 線性代數#56164
89年 - 89 淡江大學 轉學考 線性代數#56164
科目:
轉學考-線性代數 |
年份:
89年 |
選擇題數:
0 |
申論題數:
13
試卷資訊
所屬科目:
轉學考-線性代數
選擇題 (0)
申論題 (13)
【已刪除】(a) Prove that is a vector space over
. (5%)
(b) Give a basis for A4 and find the dimension of M, (5%)
【已刪除】2. Let A be an n x n matrix with real entries. Let W
be the null space of A, and let c
be a particular solution to the system AX = B. Prove that c + W is the complete set of solutions to AX = B. (10%)
【已刪除】3. Let T : U→ V and S : V →W be linear transformations. Prove that the
【已刪除】 (a) If W and U are both subspaces of a vector space V, then
is also a subspace of V. (5%)
【已刪除】(b) If W and U are both subspaces of a vector space V y then
is also a subspace of V (5%)
(c) det(A + D) =det(A)+dct(B), where clet(A) denotes the determinant of a square matrix A. (5%)
(a) Find the matrix representations of S、T and T o S relative to the standard basis. (6%)
(b) Find the matrix representations of S relative to the basis {(1,1),(0, 2)}. (9%)
(c) Evaluate S
100
(1,—1). (10%)
(a) Find the characteristic polynomial and the minimal polynomial of A. ( 10%)
(b) Find the eigenvalues and the corresponding cigcnspaces of A. (10%)
(c) Find the Jodon canonical form J for A, and find a matrix P such that P
-1
AP = J. (10%)