所屬科目:教甄◆數學
1. 已知 [ ] x 為不大於 x 之最大整數,若= 2000 ,則 n =_____ 。
2. 坐標平面上 O(0,0)、 A a( ,20)、 B b( ,25)為一個正三角形的三個頂點,則ab =_____ 。
3. 小綠投擲兩個公正的骰子,其中一個骰子 A 是正六面體,點數分別為 2,3,4,5,6,7; 另外一個骰子 B 是正八面體,點數分別為 2,3,4,5,6,7,8,9。記錄骰子 A 的點數為 a, 骰子 B 的點數為 b,若第 X 次投擲時,首次滿足為正整數,則 X 的期望值為_____ 。
4. 正四面體 ABCD 的稜長為 5,現分別在 上各取一點 P、Q、R。 若 = 2,且與平面 PQR 垂直,則五面體 PQR-BCD 的體積為_____ 。
5. 設 ,則 =_____ 。
6. 阿綠冒險時得到兩個尚未開啟的神奇寶箱,這些寶箱機緣到了,就會自動開啟, 否則就會維持關閉狀態;而寶箱一旦開啟,就會一直維持開啟狀態。 已知對每一個寶箱而言,如果今天沒有開啟,則隔天會開啟的機率為 。 若在阿綠得到寶箱的 X 天之後,首次出現兩個寶箱都是開啟狀態,則 X 的期望值為_____ 。 (註:阿綠得到寶箱的那一天,寶箱不會開啟。)
7. 已知梯形 ABCD 內接於一圓,其中 。過 D 點作圓的切線交直線 AC 於 E 點, 若,且,則 =_____。
8. 已知 a 為正整數,若方程式 (z2-2z+5)(z2-2az+1)=0有四個兩兩相異的根, 且它們在複數平面上對應的四個點恰好共圓,則a =_____ 。